

Modulbezeichnung: Grundlagen der Messtechnik (GMT) 5 ECTS

(Fundamentals of Metrology)

Modulverantwortliche/r: Tino Hausotte

Lehrende: Tino Hausotte, Assistenten

Startsemester: WS 2022/2023 Dauer: 1 Semester Turnus: halbjährlich (WS+SS)
Präsenzzeit: 60 Std. Eigenstudium: 90 Std. Sprache: Deutsch und Englisch

Lehrveranstaltungen:

Grundlagen der Messtechnik (WS 2022/2023, Vorlesung, 2 SWS, Tino Hausotte)
Grundlagen der Messtechnik - Übung (WS 2022/2023, Übung, 2 SWS, Tino Hausotte et al.)

Inhalt:

Allgemeine Grundlagen

- Was ist Metrologie: Metrologie und Teilgebiete, Einsatzbereiche, historische Entwicklung des Einheitssystems, SI-Einheitensystem SI-Einheiten (cd, K, kg, m, s, A, mol) Größe, Größenwert Extensive und intensive Größen Messung, Messgröße, Maßeinheit, Messergebnis, Messwert, Gebrauch und korrekte Angabe der Einheiten, Schreibweisen von Größenwerten, Angabe von Einheiten Grundvoraussetzungen für das Messen Rückführung der Einheiten
- Messprinzipien, Messmethoden und Messverfahren: Messprinzip, Messmethode, Messverfahren

 Einteilung der Messmethoden, Ausschlagmessmethode, Differenzmessmethode, Substitutionsmessmethode und Nullabgleichsmethode (Kompensationsmethode) Prinzip eines Messgerätes, direkte und indirekte Messmethoden Kennlinie und Kennlinienarten, analoge und digitale Messmethoden, kontinuierliche und diskontinuierliche Messung, Auflösung, Empfindlichkeit, Messbereich absolute und inkrementelle Messmethoden
- Statistik Auswertung von Messreihen: Berechnung eines Messergebnisses anhand von Messreihen Grundbegriffe der deskriptiven Statistik Darstellung und Interpretation von Messwertverteilungen (Histogramme) Häufigkeit (absolute, relative, kumulierte, relative kumulierte) Berechnung und Interpretation grundlegender Parameter: Lage (Mittelwert, Median, Modus), Streuung (Spannweite, Varianz, Standardabweichung, Variationskoeffizient), Form (Schiefe, Kurtosis bzw. Exzess) Grundbegriffe der Stochastik, Wahrscheinlichkeiten, Verteilungen (Rechteck-, U- und Normalverteilung), Zentraler Grenzwertsatz, statistische Momente Grundbegriffe der analytischen Statistik, statistische Tests und statistische Schätzverfahren Korrelation und Regression
- Messabweichungen und Messunsicherheit: Messwert, wahrer Wert, Ringvergleich, vereinbarter Wert Einflüsse auf die Messung (Ishikawa-Diagramm) Messabweichung (absolute, relative, systematische, zufällige) Umgang mit Messabweichungen, Korrektion bekannter systematischer Messabweichungen Kalibrierung, Verifizierung, Eichung Messpräzision, Messgenauigkeit, Messrichtigkeit Wiederholbedingungen/-präzision, Vergleichsbedingungen/-präzision, Erweiterte Vergleichsbedingungen/-präzision Fehlerfortpflanzungsgesetz (altes Konzept), Messunsicherheit, Eigenunsicherheit, Übersicht über Standardverfahren des GUM (Messunsicherheit), korrekte Angabe eines Messergebnisses

Messgrößen des SI-Einheitensystems

Messen elektrischer Größen und digitale Messtechnik: SI-Basiseinheit Ampere, Widerstandsund Spannungsnormale, Messung von Strom und Spannung, Lorentzkraft, Drehspulmesswerk, Bereichsanpassung - Widerstandsmessung, strom- und spannungsrichtige Messung, Wheatstone'sche
Brückenschaltung (Viertel-, Halb- und Vollbrücke, Differenzmethode und Kompensationsmethode)
- Charakteristische Werte sinusförmiger Wechselgrößen, Dreheisenmesswerk, Wechselspannungsbrücke - Messsignale, dynamische Kennfunktionen und Kennwerte, Übertragungsfunktionen (Frequenzgänge) - Digitalisierungskette, Zeit- und Wertdiskretisierung, Alias-Effekte, Shannon's Abtasttheorem, Filter, Operationsverstärker (Invertierender Verstärker, Nichtinvertierender Verstärker,
Impedanzwandler, invertierender Addierer, Differenzverstärker, Integrierer, Differenzierer, Instrumentenverstärker), Abtast-Halte-Glied, Analog-Digital-Wandlung, Abweichungen bei der Analog-DigitalWandlung - Universelle Messgeräte (Digitalmultimeter, analoge und digitale Oszilloskope)

- Messen optischer Größen: Licht und Eigenschaften des Lichtes Empfindlichkeitsspektrum des Auges - Radiometrie und Photometrie - SI-Basiseinheit Candela (cd, Lichtstärke) - Strahlungsfluss, radiometrisches (fotometrisches) Grundgesetz, photometrische und radiometrische Größen - Strahlungsgesetze - Fotodetektoren (Fotowiderstände, Fotodioden, Betriebsarten, Bauformen, CCD- und CMOS-Sensoren)
- Messen von Temperaturen: Temperatur, SI-Basiseinheit Kelvin, Definition, Wärmeübertragung (Wärmeleitung, Konvektion, Wärmestrahlung) Thermodynamische Temperatur Primäre und sekundäre Temperaturmessverfahren, praktische Temperaturskalen, Fixpunkte (Tripelpunkte, Erstarrungspunkte), Fixpunktzellen, klassische Temperaturskalen, internationale Temperaturskala (ITS-90) Berührungsthermometer, thermische Messabweichungen, thermische Ausdehnung, Gasthermometer, Flüssigkeitsglasthermometer, Bimetall-Thermometer, Metall-Widerstandsthermometer (Kennlinie, Genauigkeit, Bauformen, Messschaltungen), Thermoelemente (Seebeck-Effekt, Bauformen, Ausgleichsleitungen, Messschaltungen) Strahlungsthermometer (Prinzip, Strahlungsgesetze, Pyrometer, Messabweichungen)
- Zeit und Frequenz: SI Basiseinheit Sekunde, Zeitmessung (Aufgaben, Historie, mechanische Uhren, Quarzuhren, Atomuhr) Darstellung der Zeit Verbreitung der Zeitskala UTC Globales Positionssystem (GPS) Frequenz- und Phasenwinkelmessung
- Längenmesstechnik: SI Basiseinheit Meter Messschieber, Abbe'sches Komparatorprinzip, Bügelmessschraube, Abweichungen 1.- und 2.-Ordnung Längenmessung mit Linearencodern (Bewegungsrichtung, Ausgangssignale, Differenzsignale, Demodulation) Absolutkodierung (V-Scannen und Gray Code) Interferometrie, Michelson-Interferometer, transversale elektromagnetische Wellen, Grundlagen der Interferenz, destruktive und konstruktive Interferenz, Homodynprinzip, Heterodynprinzip, Interferenz am Homodyninterferometer, Demodulation am Homodyn- und Heterodyninterferometer, Einfluss Luftbrechzahl, Realisierung der Meterdefinition, Reflektoren und Aufbau von Interferometern, induktive Längenmessung, kapazitive Längenmessung, Laufzeitmessung
- Masse, Kraft und Drehmoment: SI Basiseinheit Kilogramm, Definition Masse, Kraft und Drehmoment Massenormale (Vergleiche, Bauformen und Abweichungsgrenzen), Prinzip der Masseableitung, Stabilität der Einheit und Neudefinition Messprinzipien von Waagen, Einflussgrößen bei Massebestimmung (lokale Erdbeschleunigung, Luftauftrieb), Balkenwaage (unterschalige Waagen, Empfindlichkeit, Bauformen, oberschalige Waagen, Ecklastabhängigkeit), Federwaage, DMS, Verformungskörper, DMS-Waage, EMK-Waage, Massekomparatoren Drehmomentmessung (Reaktionsund Aktionsdrehmoment)

Teilgebiete der industriellen Messtechnik

- Prozessmesstechnik: Messgrößen der Prozessmesstechnik Definition des Druckes, Druckarten (Absolutdruck, Überdruck, Differenzdruck) - Druckwaage (Kolbenmanometer), U-Rohrmanometer und -Barometer, Rohrfedermanometer, Plattenfedermanometer - Drucksensoren (mit DMS, piezoresistiv, kapazitiv, piezoelektrisch) - Durchflussmessung (Volumenstrom und Massestrom, Strömung von Fluiden) - volumetrische Verfahren, Wirkdruckverfahren, magnetisch-induktive Durchflussmessung, Ultraschall-Durchflussmessung - Massedurchflussmessung (Coriolis, thermisch)
- Fertigungsmesstechnik: Aufgaben, Methoden, Ziele und Bereiche der Fertigungsmesstechnik Gestaltparameter von Werkstücken (Mikro- und Makrogestalt), Geometrische Produktspezifikation
 (GPS), Gestaltabweichungsarten Geräte und Hilfsmittel der Fertigungsmesstechnik, Gegenüberstellung klassische Fertigungsmesstechnik und Koordinatenmesstechnik, Auswertung Bauarten und
 Grundstruktur von Koordinatenmessgeräten Vorgehensweise bei Messen mit einem Koordinatenmessgerät

Inhalt (Übung)

- Grundlagen der Elektrotechnik (Wiederholung von Grundlagen)
- Statistik Auswertung von Messreihen (Histogramme, Hypothesentest, Konfidenzintervalle, statistischen Maßzahlen)
- Korrelation und Regression (Korrelationskoeffizient, Fehlerfortpflanzung, Residuenanalyse)
- Messabweichungen, Einführung in die Messunsicherheitsberechnung (Kompensation systematischer Abweichungen, Messunsicherheitsanalyse einer einfachen Messung)

- Elektrische Größen, Messelektronik und Analog-Digital-Umsetzung (Abweichungsberechnung bei der Strommessung, Anpassungsnetzwerk für ein Drehspulinstrument, Bereichsanpassung mit einem Operationsverstärker)
- Anwendung der Wheatstone'schen Brückenschaltung bei Messungen mit Dehnungsmessstreifen
- Messungen mit Fotodioden bei unterschiedlichen Betriebsarten
- Temperaturmesstechnik (Aufgaben zu Metall-Widerstandsthermometern und Pyrometern)
- Längenmesstechnik (Abbe'sche Prinzip, Induktivität eines Eisenkerns mit Luftspalt, Foliendickenmessung mittels einer kapazitiven Messeinrichtung)
- Messen von Kraft und Masse (Massewirkung, Balkenwaage, Federwaage, piezoelektrischer Kraftsensor)
- Prozessmesstechnik (Druck- und Durchflussmessung, U-Rohrmanometer, Corioliskraftmessung, Ultraschallmessverfahren, Turbinenzähler)
- Fertigungsmesstechnik (Standardgeometrieelemente, Angabe von Toleranzen, Prüfen von Rundheitsabweichungen mit Hilfe eines Feinzeigers)

Contents (Lecture)

General basics

- What is metrology: Metrology and braches, application fields, historical development of the unit system, SI unit system Definitions of SI units (cd, K, kg, m, s, A, mol) Quantity, quantity value Extensive and intensive quantities Measurement, measurand, measurement unit, measurement result, measured quantity value Correct use and notation of units and of quantity values Basic requirements for the measurement Traceability
- Principles, methods and procedures of measurement: Principles, methods and procedures of
 measurement Classification of measurement methods, deflection, differential, substitution and
 compensation measurement methods Principle of a measuring instrument, direct and indirect
 measurement methods Characteristic curve, types of characteristic curves, analogue and digital
 measurement methods, continuous and discontinuous measurement, resolution, sensitivity, measuring interval Absolute and incremental measurement methods
- Statistics Evaluation of measurements series: Calculation of a measurement result based on measurement series Basic terms of descriptive statistics Presentation and interpretation of measured value distributions (histograms) Frequency (absolute, relative, cumulative, relative cumulative) Calculation and interpretation of basic parameters: location (mean, median, mode), dispersion (range, variance, standard deviation, coefficient of variation), shape (skewness, excess, kurtosis) Basic terms of stochastics, probabilities, distributions (rectangle, U and normal distribution), central limit theorem, statistical moments Basic terms of analytical statistics, statistical tests and statistical estimation methods Correlation and regression
- Measurement errors and measurement uncertainty: Measured value, true value, key comparison, conventional quantity value Influences on the measurement (Ishikawa diagram) Measurement error (absolute, relative, systematic, random) Handling of errors, correction of known systematic measurement errors Calibration, verification, legal verification Measurement precision, accuracy and trueness Repeatability conditions and repeatability, intermediate precision condition and measurement precision, reproducibility condition of measurement and reproducibility Error propagation law (old concept), measurement uncertainty, definitional uncertainty, overview of standard method of the GUM (measurement uncertainty), correct specification of a measurement result

Mesurands of the SI system of units

Measurement of electrical quantities: SI base unit Ampere, resistance and voltage standards, measurement of current and voltage, Lorentz force, moving coil instrument, range adjustment - Resistance measurement, current and voltage correct measurement, Wheatstone bridge circuit (quarter, half and full bridge, differential method and compensation method) - Characteristic values of sinusoidal alternating quantities, moving iron instrument, alternating voltage bridge - Measuring signals, dynamic characteristic functions and characteristics, transfer functions (frequency responses) - Digitalisation chain, time and value discretization, aliasing, Shannon's sampling theorem, filter,

- operational amplifier (inverting amplifier, non-inverting amplifier, impedance converter, inverting summing amplifier, differential amplifier, integrating amplifier, differentiating amplifier, instrumentation amplifier), sample-and-hold device, analogue-digital conversion, errors of analogue-to-digital conversion Universal measuring devices (digital multimeter, analogue and digital oscilloscopes)
- Measurement of optical quantities: Light and properties of light Sensitivity spectra of the eye Radiometry and photometry SI base unit candela (cd, luminous intensity) Radiant flux, radiometric
 (photometric) fundamental law, photometric and radiometric quantities Radiation laws Photo
 detectors (photo resistors, photo diodes, modes of operation, designs, CCD and CMOS sensors)
- Measurement of temperatures: Temperature, SI base unit Kelvin, definition, heat transfer (conduction, convection, radiation) Thermodynamic temperature Primary and secondary temperature measurement methods, practical temperature scales, fixpoints (triple points, freezing points), fixpoint cells, classical temperature scales, International Temperature Scale (ITS-90) Contact thermometers, thermal measurement errors, thermal expansion, gas thermometer, liquid thermometer, bimetal thermometer, metal resistance thermometers (characteristic curve, accuracy, designs, circuits), thermocouples (Seebeck effect, designs, extension wires, measurement circuits) Radiation thermometer (principle, radiation laws, pyrometers, measurement errors)
- Time and frequency: SI base unit second, time measurement (tasks, history, mechanical clocks, quartz clock, atomic clock) Representation of time Propagation of UTC Global Positioning System (GPS) Frequency and phase angle measurement
- Length: SI base unit metre Calliper, Abbe comparator principle, micrometer, errors 1st and 2nd order Length measurement with linear encoders (motion direction, output signals, differential signals, demodulation) Absolute coding (V-Scan and Gray code) Interferometry, Michelson interferometer, transversal electromagnetic waves, basics of interference, destructive and constructive interference, homodyne principle, heterodyne principle, interference on homodyne interferometer, demodulation at homodyne and heterodyne interferometer, influence of air refractive index, realisation of the metre definition, reflectors and assembly of interferometers, inductive length measurement, capacitive length measurement, time of flight measurement
- Mass, force and torque: SI base unit kilogram, definition of mass, force and torque Mass standards (comparisons, types, deviation limits), principle of mass dissemination, stability of the unit and redefinition Measurement principles of weighing, influences for mass determination (local gravitational acceleration, air buoyancy), beam balance (hanging pan balances, sensitivity, types, top pan balances, corner load sensitivity), spring balance, DMS, deformation elements, DMS balance, EMC balance, mass comparators Measurement of torque (reactive and active)

Branches of industrial metrology

- Process measurement technology: Quantities of process measurement technology Definition of pressure, pressure types (absolute pressure, overpressure, differential pressure) Deadweight tester (piston manometer), U-tube manometer and barometer, bourdon tube gauge, diaphragm pressure gauge Pressure sensors (with DMS, piezoresistive, capacitive, piezoelectric) Flow measurement (volume flow and mass flow, flow of fluids) Volumetric method, differential pressure method, magneto-inductive flowmeter, ultrasonic flow measurement Mass flow rate measurement (Coriolis, thermal)
- Manufacturing metrology: Tasks, methods, objectives and branches of manufacturing metrology Form parameters of workpieces (micro-and macro-shape), geometrical product specification (GPS),
 geometrical tolerances Comparison of classical manufacturing metrology and coordinate metrology,
 evaluation Designs and basic structure of coordinate measuring machines Procedure for measuring
 with a coordinate measuring machine

Lernziele und Kompetenzen:

Wissen

- Die Studierenden kennen grundlegende statistische Methoden zur Beurteilung von Messergebnissen und Ermittlung von Messunsicherheiten.
- Die Studierenden kennen grundlegende Messverfahren zur Erfassung der Messgrößen aller SI-Einheiten.
- Die Studierenden kennen das Basiswissen zu Grundlagen der Messtechnik und messtechnischen Tätigkeiten.

Die Studierenden haben Grundkenntnisse zur methodisch-operativen Herangehensweise an Aufgaben des Messens statischer Größen, zum Lösen einfacher Messaufgaben und zum Ermitteln von Messergebnissen aus Messwerten.

Verstehen

- Die Studierenden können die Eigenschaften von Messeinrichtungen und Messprozessen beschreiben.
- Die Studierenden können das Internationale Einheitensystem und die Rückführung von Messergebnissen beschreiben.

Anwenden

- Die Studierenden können einfache Messungen statischer Größen durchführen.
- Die Studierenden können Messunsicherheiten komplexer Messeinrichtungen bei gegebenen Eingangsgrößen berechnen.

Evaluieren (Beurteilen)

• Die Studierenden können Messeinrichtungen, Messprozesse und Messergebnisse bewerten.

Learning targets and competences:

Remembering

- The students know basic statistical methods for the evaluation of measurement results and the determination of measurement uncertainties.
- The students know basic measuring methods for the record of measured values ​​for all SI units.
- The students have basic knowledge of fundamentals of metrology and metrology activities.
- The students have fundamental knowledge for methodological and operational approach to measuring tasks of static measurement types, to solve basic measurement tasks and to establishing measurement results from measurement values.

Understanding

- The students are able to describe the characteristics of measuring instruments and measurement processes.
- The students are able to describe the international system of units (SI) and the traceability of measurement results

Applying

• The students are able to run basic measurements of static measurands.

Evaluating

- The students are able to evaluate measuring systems, measurement processes and measurement results
- Students are able to calculate the measurement uncertainty of complex measuring systems for given input variables.

Literatur:

- International Vocabulary of Metrology Basic and General Concepts and Associated Terms, VIM, 3rd edition, JCGM 200:2008, http://www.bipm.org/en/publications/guides/vim.html
- DIN e.V. (Hrsg.): Internationales Wörterbuch der Metrologie Grundlegende und allgemeine Begriffe und zugeordnete Benennungen (VIM) ISO/IEC-Leitfaden 99:2007. Korrigierte Fassung 2012, Beuth Verlag GmbH, 4. Auflage 2012
- Hoffmann, Jörg: Handbuch der Messtechnik. 4. Auflage, Carl Hanser Verlag München, 2012 ISBN 978-3-446-42736-5
- Lerch, Reinhard: Elektrische Messtechnik. 6. Auflage, Springer-Verlag Berlin Heidelberg, 2012 -ISBN 978-3-642-22608-3
- Richter, Werner: Elektrische Meßtechnik. 3. Auflage, Verlag Technik Berlin, 1994 ISBN 3-341-01106-4
- Kohlrausch, Friedrich: Praktische Physik: zum Gebrauch für Unterricht, Forschung und Technik. Band 1-3, 24. Auflage, Teubner Verlag, 1996 ISBN 3-519-23001-1, 3-519-23002-X, 3-519-23000-3
- H. Czichos (Hrsg.): Das Ingenieurwissen Gebundene. 7. Auflage, Springer Verlag, 2012, ISBN 978-3-642-22849-0.
- Ernst, Alfons: Digitale Längen- und Winkelmesstechnik. 4. Auflage, Verlag Moderne Industrie, 2001
 ISBN 3-478-93264-5

- Pfeifer, Tilo: Fertigungsmeßtechnik. R. Oldenbourg Verlag München Wien, 1998 ISBN 3-486-24219-9
- Keferstein, Claus P.: Fertigungsmesstechnik. 7. Auflage, Vieweg+Teubner Verlag, 2011 ISBN 978-3-8348-0692-5
- Warnecke, H.-J.; Dutschke, W.: Fertigungsmeßtechnik. Springer-Verlag Berlin Heidelberg New York Tokyo, 1984 - ISBN 3-540-11784-9

Verwendbarkeit des Moduls / Einpassung in den Musterstudienplan:

Das Modul ist im Kontext der folgenden Studienfächer/Vertiefungsrichtungen verwendbar:

[1] Artificial Intelligence (Master of Science)

(Po-Vers. 2021s | TechFak | Artificial Intelligence (Master of Science) | Gesamtkonto | Nebenfach | Maschinenbau | Qualitätsmanagement und Messtechnik | Grundlagen der Messtechnik)

Dieses Modul ist daneben auch in den Studienfächern "Berufspädagogik Technik (Bachelor of Science)", "Berufspädagogik Technik (Master of Education)", "Computational Engineering (Rechnergestütztes Ingenieurwesen) (Bachelor of Science)", "Energietechnik (Bachelor of Science)", "Energietechnik (Master of Science)", "Informatik (Bachelor of Science)", "Informatik (Bachelor of Science)", "Informatik (Bachelor of Science)", "Maschinenbau (Bachelor of Science)", "Mechatronik (Bachelor of Science)", "Medizintechnik (Bachelor of Science)", "Technomathematik (Bachelor of Science)", "Wirtschaftsingenieurwesen (Bachelor of Science)", "Wirtschaftsingenieurwesen (Master of Science)" verwendbar.

Studien-/Prüfungsleistungen:

Grundlagen der Messtechnik (Prüfungsnummer: 45101)

(englische Bezeichnung: Fundamentals of Metrology)

Prüfungsleistung, Klausur mit MultipleChoice, Dauer (in Minuten): 60

Anteil an der Berechnung der Modulnote: 100%

weitere Erläuterungen:

- Prüfungstermine, eine allgemeine Regel der Prüfungstagvergabe und Termine der Klausureinsicht finden Sie auf StudOn: Prüfungstermine und Termine der Klausureinsicht
- Die Lehrveranstaltungen *Grundlagen der Messtechnik* [*GMT*] im Wintersemester und *Fundamentals of Metrology* [*FoM*] im Sommersemester sind **inhaltlich identisch**. Beide Lehrveranstaltungen werden **bilingual** (Vorlesungsunterlagen: englisch-deutsch, Vortragssprache: deutsch) gehalten.
- Die **Prüfungen** über *Grundlagen der Messtechnik* [*GMT*] (Prüfungnr. 45101) und *Fundamentals of Metrology* [*FoM*] (Prüfungnr. 47701) sind **inhaltlich identisch**. Die Aufgabenstellung der Prüfung über *GMT* ist nur **in Deutsch**, während die Aufgabenstellung der Prüfung über *FoM* **bilingual** (englisch-deutsch) ist.

Erstablegung: WS 2022/2023, 1. Wdh.: SS 2023, 2. Wdh.: WS 2023/2024

1. Prüfer: Tino Hausotte

Organisatorisches:

Unterlagen zur Lehrveranstaltung werden auf der Lernplattform StudOn (www.studon.uni-erlangen.de)
 bereitgestellt. Das Passwort wird in der Einführungsveranstaltung bekannt gegeben.