

Modulbezeichnung: Nebenfach Mikro- und Nanostrukturforschung für 10 ECTS

NT (MNF M7 NT)

(Micro- and Nanostructure Research for NT)

Modulverantwortliche/r: Erdmann Spiecker

Lehrende: Mingjian Wu, Stefanie Rechberger, Erdmann Spiecker, Julian Müller

Startsemester: WS 2016/2017 Dauer: 2 Semester Turnus: jährlich (WS)

Präsenzzeit: 120 Std. Eigenstudium: 180 Std. Sprache: Deutsch oder Englisch

Lehrveranstaltungen:

Nicht wählbar für Studierende im Kernfach Mikro- und Nanostrukturforschung (M6).

Die Wahlpflichtveranstaltungen müssen so gewählt werden, dass mindestens 2 ECTS erbracht werden.

Pflichtveranstaltungen

Rasterelektronenmikroskopie in Materialforschung und Nanotechnologie (WS 2016/2017, Vorlesung, 2 SWS, Julian Müller et al.)

Transmissionselektronenmikroskopie in Materialforschung und Nanotechnologie 2 (SS 2017, Vorlesung, 2 SWS, Erdmann Spiecker et al.)

Übungen zur Transmissionselektronenmikroskopie 1 (WS 2016/2017, Übung, 2 SWS, Mingjian Wu et al.)

Wahlpflichtveranstaltungen

Übungen zur Rasterelektronenmikroskopie (WS 2016/2017, optional, Übung, 2 SWS, Julian Müller et al.)

Übungen zur Transmissionselektronenmikroskopie 2 (SS 2017, optional, Übung, 2 SWS, Mingjian Wu et al.)

Inhalt:

Die Studierenden können ein Modul aus den Bereichen "Chemie und Bioingenieurwesen", "Elektrotechnik-Elektronik-Informationstechnik", "Materialwissen schaft und Werkstofftechnik", "Physik", "Chemie" belegen. Die Module dürfen nicht fächerübergreifend gewählt werden. Eine Veranstaltung des Moduls M7 darf nicht ein weiteres Mal in ein anderes Modul eingebracht werden.

Das Modul befasst sich mit den Grundlagen der Elektronenmikroskopie und hat zum Ziel, den Teilnehmerinnen und Teilnehmern die weitreichenden Möglichkeiten der Mikroskopie mit schnellen Elektronen für die Strukturuntersuchung von Materialen aufzuzeigen. Im Rahmen von Vorlesungen und Übungen soll ein fundiertes Verständnis für die Wechselwirkung von schnellen Elektronen mit Materie und die daraus resultierenden Kontrastphänomene in elektronenmikroskopischen Abbildungen und Beugungsbildern erarbeitet werden. Darüber hinaus werden die Komponenten der Raster- und Transmissionelektronenmikroskope anschaulich erläutert um ein Verständnis für die Funktionsweise der Elektronenmikroskope zu generieren.

In den Pflichtveranstaltungen werden im Bereich der Transmissionselektronenmikroskopie (TEM) verschiedene Abbildungsmodii und die wichtigsten analytische Verfahren - Energiedispersive Röntgenspektroskopie (EDXS), Elektronen-Energie-Verlust-Spektroskopie (EELS) und Energiegefilterte TEM (EFTEM) - behandelt. Im Bereich der Rasterelektronenmikroskopie (REM) werden die verschiedenen Abbildungsmodii, fortgeschrittene REM-Techniken für topographische und chemische Abbildung als auch moderne verwandte Methoden wie Dual-Beam FIB und He-Ionenmikroskopie diskutiert.

In den Wahlpflichtveranstaltungen kann zwischen den Übungen zur Rasterelektronenmiksorkopie und den Übungen zur Transmissionselektronenmikroskopie 2 gewählt werden.

Lernziele und Kompetenzen:

- Vertieftes Erlernen mikroskopischer Verfahren zur Untersuchung von Materialien auf kleinen Längenskalen
- Vertieftes Erlernen der vielfältigen Verfahren der Elektronenmikroskopie und deren Anwendung in den Material- und Nanowissenschaften
- Verstehen der Einsatzmöglichkeiten hochaufgelöster mikroskopischer Verfahren zur Untersuchung von Nanomaterialien

UnivIS: 31.05.2024 03:00

- Vertiefung der Zusammenhänge zwischen der chemischen Zusammensetzung, der Struktur und den Eigenschaften von Werkstoffen
- Erwerben fundierter Kenntnisse über die Grundlagen zum Aufbau der verschiedenen Werkstoffklassen
- Anwenden der erlernten Inhalte bei Übungen
- Erweiterung des Wissenshorizonts durch angewandte Beispiele und Übungen

Literatur:

- Vorlesungsskripte
- Goodhew, Humphreys and Beanland, Electron Microscopy and Analysis, Taylor & Francis
- Williams & Carter, Transmission Electron Microscopy, Springer Verlag
- Reimer & Kohl, Transmission Electron Microscopy, Springer Verlag
- Fultz & Howe, Transmission Electron Microscopy and Diffractometry of Mateirals. Springer Verlag
- Reimer, Transmission Electron Microscopy, Springer Verlag
- Reimer, Scanning Electron Microscopy, Springer Verlag
- Fuchs, Oppolzer and Rehme, Particle Beam Microanalysis, VCH Verlagsgesellschaft
- P. Haasen, Physikalische Metallkunde, Springer Verlag
- G. Gottstein, Physikalische Grundlagen der Materialkunde, Spinger Verlag
- Weitere Fachliteratur

Verwendbarkeit des Moduls / Einpassung in den Musterstudienplan:

Das Modul ist im Kontext der folgenden Studienfächer/Vertiefungsrichtungen verwendbar:

[1] Nanotechnologie (Master of Science)

(Po-Vers. 2015w | TechFak | Nanotechnologie (Master of Science) | Masterprüfung | Naturwissenschaftlich - technisches Wahlmodul)

Studien-/Prüfungsleistungen:

Nebenfach Mikro- und Nanostrukturforschung für NT (Prüfungsnummer: 773674)

(englische Bezeichnung: Micro- and Nanostructure Research for NT)

Prüfungsleistung, mündliche Prüfung, Dauer (in Minuten): 20

Anteil an der Berechnung der Modulnote: 100%

weitere Erläuterungen:

Die ausgewählten optionalen Lehrveranstaltungen im Umfang von 2 ECTS sind den Studien-/Prüfungsleistungen zugeordnet.

Prüfungssprache: Deutsch oder Englisch

Erstablegung: SS 2017, 1. Wdh.: WS 2017/2018

1. Prüfer: Erdmann Spiecker

UnivIS: 31.05.2024 03:00 2