UnivIS
Informationssystem der Friedrich-Alexander-Universität Erlangen-Nürnberg © Config eG 
FAU Logo
  Sammlung/Stundenplan    Modulbelegung Home  |  Rechtliches  |  Kontakt  |  Hilfe    
Suche:      Semester:   
 Lehr-
veranstaltungen
   Personen/
Einrichtungen
   Räume   Forschungs-
bericht
   Publi-
kationen
   Internat.
Kontakte
   Examens-
arbeiten
   Telefon &
E-Mail
 
 
 Darstellung
 
kompakt

kurz

Druckansicht

 
 
Stundenplan

 
 
 Extras
 
alle markieren

alle Markierungen löschen

Ausgabe als XML

 
 
 Außerdem im UnivIS
 
Vorlesungs- und Modulverzeichnis nach Studiengängen

Vorlesungsverzeichnis

 
 
Veranstaltungskalender

Stellenangebote

Möbel-/Rechnerbörse

 
 
Einrichtungen >> Technische Fakultät (TF) >> Verwaltung und Serviceeinrichtungen Technische Fakultät >> MAOT - Master Programme in Advanced Optical Technologies (Elitestudiengang) >>

Geschäftsstelle MAOT

 

Advanced C++ Programming [AdvCpp]

Dozent/in:
Harald Köstler
Angaben:
Vorlesung, 2 SWS, ECTS: 2,5, Dies ist eine Online-Vorlesung, organisiert über die VHB: http://vhb.org
Termine:
Zeit/Ort n.V.

 

Advanced Course in Experimental Physics (Lasers, Atomic Physics and Quantum Optics) [EV-A]

Dozent/in:
Joachim von Zanthier
Angaben:
Vorlesung, 4 SWS, ECTS: 10
Termine:
Do, 12:00 - 14:00, HH
Mo, 16:00 - 18:00, HE
Studienrichtungen / Studienfächer:
WPF Ph-MA ab 1
Inhalt:
Starting from the lectures EP3 (Optics and Quantum Phenomena) and EP4 (Atomic and Molecular Physics) the lecture discusses light-matter interaction in different systems as well as the quantum nature of light. Emphasis is put onto the laser. Starting from the theory of optical resonators and Gaussian beams we review the generation of laser light on a microscopic level (Maxwell-Bloch equations) and examine its principal characteristics. Various applications of laser light in quantum optics, laser spectroscopy, laser cooling and trapping of atoms and in non-linear optics are investigated. In addition we review various quantum optical phenomena like photon statistics, photon bunching/anti-bunching, multi-photon interferences, intensity interferometers and resonance fluorescence.

 

Advanced Course in Experimental Physics (Lasers, Atomic Physics and Quantum Optics) (Excercise class) [EV-AU]

Dozent/in:
Joachim von Zanthier
Angaben:
Übung, 2 SWS
Termine:
Do, 8:00 - 10:00, SR 01.779, SR 00.732, SRLP 0.179
Mi, 10:00 - 12:00, SRLP 0.179, SR 00.732
Studienrichtungen / Studienfächer:
WPF Ph-MA ab 1

 

Advanced Optical Communication Systems [AOC]

Dozent/in:
Bernhard Schmauss
Angaben:
Vorlesung, 2 SWS, benoteter Schein, ECTS: 5, nur Fachstudium
Termine:
Mi, 12:15 - 13:45, HF-Technik: SR 05.222
Studienrichtungen / Studienfächer:
WPF AOT-GL 2-3
WPF CME-MA 1-4
WF ASC-MA 1-4
WPF CE-MA-TA-PO ab 1
Voraussetzungen / Organisatorisches:
Please register in StudOn „LHFT - Advanced Optical Communication Systems" .

Prerequisites:

  • Fundamentals in signals and systems.

  • Basic knowledge of fiber optics and optoelectronic components recommended.

Inhalt:
  • Multiplex Techniques: electrical / optical time division multiplexing, wavelength division multiplexing
  • Dispersion Management: dispersion and bitrate, dispersion compensation, dispersion in WDM systems

  • Noise and Power Management: power budget, OSNR management, OSNR calculation

  • Management of Nonlinearities: self & cross phase modulation (SPM / XPM), four wave mixing (FWM), Raman scattering, solitons

  • Spectral Efficiency: definition, increase of spectral efficiency

  • Modulation Formats:intensity modulation, multilevel transmission, CS-RZ, SSB Transmission, DPSK, DQPSK, Coherent Transmission

  • Optical Regeneration: 2R-Regeneration by nonlinearities, distributed regeneration, 3R-Regeneration

Empfohlene Literatur:
Agrawal, G.P.: Fiber-Optic Communication Systems, John Wiley & Sons, 1997
Agrawal, G.P.: Nonlinear Fiber Optics, John Wiley & Sons, 3. Auflage, 2001.
Kaminow, I, Koch, T.: Optical Fiber Telecommunications IVA, Academic Press, 2002.
Kaminow, I, Li, T., Willner,A.: Optical Fiber Telecommunications VA, Academic Press, 2008.

 

Advanced Optical Communication Systems Exercises [AOC/E]

Dozent/in:
Lisa Härteis
Angaben:
Übung, 2 SWS, nur Fachstudium
Termine:
Mi, 10:15 - 11:45, HF-Technik 0.144
Excersises will start on 27.10.21
Studienrichtungen / Studienfächer:
WPF CME-MA 1-4
WPF AOT-GL 2-3
WF ASC-MA 1-4
Voraussetzungen / Organisatorisches:
Please register in StudOn „LHFT - Advanced Optical Communication Systems" .

 

Advanced Programming Techniques [AdvPT]

Dozent/in:
Harald Köstler
Angaben:
Vorlesung mit Übung, 4 SWS, benoteter Schein, ECTS: 5, nur Fachstudium, Zu diesem Modul gehört eine Übung im Umfang von 2,5 ECTS, die in den Wahlvertiefungsbereich B8 eingebracht werden kann.
Termine:
Do, 16:15 - 17:45, Raum n.V.
Fr, 10:15 - 11:45, H14
Die VL am Do findet online statt, erste VL am 22.10.21
Studienrichtungen / Studienfächer:
WF MT-MA ab 1
WF CE-MA-INF ab 1
WF CE-BA-TW ab 5
WPF INF-MA ab 1
WF INF-BA ab 5
WF IuK-BA ab 3
PF MT-BA-BV ab 5

 

Advanced Semiconductor Technologies - Photovoltaic Systems for Power Generation - Design Implementation and Characterization [AST-PVS-Design]

Dozentinnen/Dozenten:
Christoph J. Brabec, Jens Hauch
Angaben:
Vorlesung mit Übung, 2 SWS, benoteter Schein, ECTS: 3, nur Fachstudium, In Ausnahmefällen als ZOOM- Meeting. Anmeldung im StudOn wird empfohlen / In exceptional cases as a ZOOM meeting. Registration in StudOn is recommended. Allgemeine Vorbesprechung zum Studium am MEET am 18.10.21 um 9 Uhr, ZOOM: https://fau.zoom.us/j/66397932198?pwd=TCt5Unlack5BVTFUckpUelBQeDgyUT09 Meeting-ID: 663 9793 2198 Kenncode: 022307
Termine:
Mi, 9:15 - 10:45, 3.71
Wenn online, dann Videos im StudOn / If ZOOM meeting, then videos in StudOn, Preliminary meeting: 18.10.2021, 9:00 - 10:00, Zoom meeting
ab 27.10.2021
Vorbesprechung: Mittwoch, 20.10.2021, 10:15 - 11:00 Uhr, 3.71
Studienrichtungen / Studienfächer:
WF ET-MA-MWT ab 1
WF MWT-MA-WET ab 1
WF MWT-MA-MEET 1
WF NT-MA-WET ab 1
WF NT-MA-MEET ab 1
WF ET-MA-MWT ab 2
WF AOT-GL ab 1
WPF CEP-MA ab 1
WPF DS-MA ab 1

 

Seminar and Conference Participation on Solar Energy [Sem&Conf_SE]

Dozentinnen/Dozenten:
Jens Hauch, Ning Li, Christoph J. Brabec
Angaben:
Seminar, 2 SWS, Schein, ECTS: 2, nur Fachstudium, Anmeldung im StudOn wird empholen, Vorbesprechung im Rahmen der allgemeinen Vorbesprechung zum Studium am i-MEET, am 18.10.21 um 9 Uhr
Termine:
Einzeltermin am 25.2.2022, 14:15 - 16:45, 3.71
Zeit n.V., additional - ZOOM -Videos im StudOn
Vorbesprechung: Montag, 18.10.2021, 9:00 - 10:00 Uhr
Studienrichtungen / Studienfächer:
WF MWT-MA ab 1
WF MWT-MA-MEET 1
WF NT-MA 1
WF NT-MA-MEET 1
WF ET-MA ab 1
Schlagwörter:
Advanced Semiconductor Technology, Solar Energy Seminar

 

Advanced theoretical physics: Advanced quantum mechanics [TV-A]

Dozent/in:
Hanno Sahlmann
Angaben:
Vorlesung, 4 SWS, ECTS: 10, Please join the course on StudOn.
Termine:
Di, Do, 10:00 - 12:00, HD
Studienrichtungen / Studienfächer:
WPF Ph-MA ab 1
WF PhM-MA ab 1
Inhalt:
Advanced quantum mechanics and introduction to quantum field theory

 

Advanced theoretical physics: Advanced quantum mechanics (Exercise class) [TV-AU]

Dozentinnen/Dozenten:
Hanno Sahlmann, Tutoren
Angaben:
Übung, 3 SWS, nur Fachstudium
Termine:
Do, 13:00 - 16:00, SR 01.779
Do, 14:00 - 17:00, SR 02.729
Do, 16:00 - 19:00, SR 02.779
Do, 13:00 - 19:00, HB
Einzeltermin am 5.11.2021, 15:30 - 18:30, SR 00.732
Studienrichtungen / Studienfächer:
WPF Ph-MA ab 1
WF PhM-MA ab 1

 

Basic of Lasers

Dozent/in:
Nicolas Joly
Angaben:
Vorlesung, 4 SWS, Schein, ECTS: 5
Termine:
Mo, 14:15 - 15:45, Raum n.V.
Di, 12:15 - 13:45, Raum n.V.
The course will be conducted as online course. For more details and registrationplease go to https://www.studon.fau.de/crs3259156_join.html
Studienrichtungen / Studienfächer:
WPF AOT-GL ab 1
Inhalt:
The goal of this lecture is to give basics knowledge of Laser. This will cover the following topics:
  • Gaussian optics, design and stability of a laser cavity

  • Rate equation and dynamics of a laser

  • Short and ultrashort laser pulses: Q-switch vs Mode-locking.

  • Detection and characterization of laser pulse

 

Basic of Lasers - Lab sessions

Dozent/in:
N.N.
Angaben:
Praktikum, Part of the "Basic of Laser" course
Termine:
Fr, Di

 

Deep Learning [DL]

Dozent/in:
Andreas Maier
Angaben:
Vorlesung, 2 SWS, ECTS: 2,5, nur Fachstudium, Information regarding the online teaching will be added to the studon course
Termine:
Fr, 8:15 - 9:45, H7
Studienrichtungen / Studienfächer:
WPF ME-BA-MG6 4-6
WPF INF-MA ab 1
WPF MT-MA-BDV 1
WPF ME-MA-MG6 4-6
Voraussetzungen / Organisatorisches:
The following lectures are recommended:
  • Introduction to Pattern Recognition (IntroPR)

  • Pattern Recognition (PR)

Application via https://www.studon.fau.de/crs3888652.html

Inhalt:
Deep Learning (DL) has attracted much interest in a wide range of applications such as image recognition, speech recognition and artificial intelligence, both from academia and industry. This lecture introduces the core elements of neural networks and deep learning, it comprises:
  • (multilayer) perceptron, backpropagation, fully connected neural networks

  • loss functions and optimization strategies

  • convolutional neural networks (CNNs)

  • activation functions

  • regularization strategies

  • common practices for training and evaluating neural networks

  • visualization of networks and results

  • common architectures, such as LeNet, Alexnet, VGG, GoogleNet

  • recurrent neural networks (RNN, TBPTT, LSTM, GRU)

  • deep reinforcement learning

  • unsupervised learning (autoencoder, RBM, DBM, VAE)

  • generative adversarial networks (GANs)

  • weakly supervised learning

  • applications of deep learning (segmentation, object detection, speech recognition, ...)

The accompanying exercises will provide a deeper understanding of the workings and architecture of neural networks.

Empfohlene Literatur:
  • Ian Goodfellow, Yoshua Bengio, Aaron Courville: Deep Learning. MIT Press, 2016
  • Christopher Bishop: Pattern Recognition and Machine Learning, Springer Verlag, Heidelberg, 2006

  • Yann LeCun, Yoshua Bengio, Geoffrey Hinton: Deep learning. Nature 521, 436–444 (28 May 2015)

Schlagwörter:
deep learning; machine learning

 

Deep Learning Exercises [DL E]

Dozentinnen/Dozenten:
Zijin Yang, Leonhard Rist, Mingxuan Gu, Noah Maul, Zhaoya Pan
Angaben:
Übung, 2 SWS, ECTS: 2,5, nur Fachstudium, This course will be held online until the coronavirus pandemic is contained to such an extent that the Bavarian state government can allow face-to-face teaching again. Information regarding the online teaching will be added to the studon course
Studienrichtungen / Studienfächer:
WPF ME-BA-MG6 4-6
WPF INF-MA ab 1
WPF ME-MA-MG6 1-3
Schlagwörter:
deep learning; machine learning

 
 
Mo12:00 - 14:000.01-142 CIP  N.N. 
 
 
Di18:00 - 20:000.01-142 CIP  N.N. 
 
 
Mi16:00 - 18:000.01-142 CIP  N.N. 
 
 
Do14:00 - 16:000.01-142 CIP  N.N. 
 
 
Fr8:00 - 10:000.01-142 CIP  N.N. 
 

Dynamic Light Scattering [OM/DLS]

Dozent/in:
Andreas Paul Fröba
Angaben:
Vorlesung mit Übung, 4 SWS, ECTS: 5, For participation in the lecture and exercise as well as to access corresponding materials, registration to the StudOn course accessible via https://www.studon.fau.de/crs2009045.html is necessary.
Termine:
Di, Mi, 18:15 - 19:45, AOT-Kursraum
Studienrichtungen / Studienfächer:
WPF AOT-GL 3

 

Fundamentals of Optics [FUNd/OPT]

Dozentinnen/Dozenten:
Hanieh Fattahi, Vahid Sandoghdar, Johannes Knorr
Angaben:
Vorlesung mit Übung, Schein, ECTS: 15
Termine:
Mo, 12:00 - 13:00, Raum n.V.
Mi, 11:00 - 12:00, Raum n.V.
The course will be conducted as online course. The given time slots are live sessions. In addition students watch recorded lessons.
Studienrichtungen / Studienfächer:
PF AOT-GL 1
Voraussetzungen / Organisatorisches:
(1) The recorded lessons by Prof. Sandoghdar can be found at
https://video.mpl.mpg.de/video/96/lecture-1-1?channelName=Sandoghdar

(2) The sessions with Dr. Fattahi, which supplements, the lessons by Prof Sandoghdar start with a meeting on 20 Oct, 11.00
https://fau.zoom.us/j/66198886693

(3) The part "Advanced Molecular Spectroscopy" by Dr. Knorr will be represented by the StudOn course
https://www.studon.fau.de/crs4003971.html
The regular live sessions, start on 18 Oct, 12.00.

 

Image Processing in Optical Nanoscopy [IPNano]

Dozent/in:
Harald Köstler
Angaben:
Vorlesung mit Übung, ECTS: 5, geeignet als Schlüsselqualifikation
Termine:
Mo, 16:15 - 17:45, 00.151-113
Termine sind auf der Studon Seite zu finden; erste VL am 18.10.21
Studienrichtungen / Studienfächer:
WPF AOT-GL ab 1
WF CE-MA-INF ab 1
WF INF-MA ab 1
WF MT-MA ab 1

 

Lab course "Computational Optics" [COO/LAB]

Dozentinnen/Dozenten:
Norbert Lindlein, Christoph Pflaum
Angaben:
Praktikum, Schein, ECTS: 2,5
Termine:
Zeit/Ort n.V.
Voraussetzungen / Organisatorisches:
Please join the online course on StudOn where you receive all necessary information
https://www.studon.fau.de/crs4111825.html
Inhalt:
The course will consist of two parts:

(1) Ray tracing
There will be four online sessions:

  • Monday 22.11.2021 13:00-15:30

  • Monday 29.11.2021 13:00-15:30

  • Monday 6.12.2021 13:00-15:30

  • Monday 13.12.2021 13:00-15:30

Between the sessions and after the sessions students will have to work on exercises. Follow the StudOn link given above.

(2) Laser
There will be four online sessions:

  • Monday, 20.12.2021, 13:00-15:30

  • Monday, 10.01.2022, 13:00-15:30

  • Monday, 17.01.2022, 13:00-15:30

  • Monday, 24.01.2022, 13:00-15:30

Between the sessions and after the sessions students will have to work on exercises. Follow the StudOn link given above.

 

Lab Course "Optical Metrology" [OM/LAB]

Dozentinnen/Dozenten:
Thomas Koller, Andreas Paul Fröba
Angaben:
Praktikum, 2 SWS, ECTS: 2,5, nur Fachstudium
Termine:
n. V.
Studienrichtungen / Studienfächer:
WPF AOT-GL 3

 

Labcourse "Optics in Communication" [OCLAB]

Dozent/in:
Lisa Härteis
Angaben:
Praktikum, 2 SWS, Schein, ECTS: 2,5
Voraussetzungen / Organisatorisches:
Note that there is a StudOn group for this lab course (https://www.studon.fau.de/crs600441.html). First meeting will be online via Zoom on Thursday Dec 16th 2021 at 10 a.m. where all important information will be given. The link will be shared in the StudOn group. Date for mandatory laser security introduction will be announced later.

 
 
n.V.    Härteis, L. 
 
 
Do9:00 - 12:00n.V.  Härteis, L. 
 

Labcourse: Optics in Medicine [OM]

Dozent/in:
Sebastian Schürmann
Angaben:
Praktikum, 2 SWS, ECTS: 2,5
Termine:
Blockveranstaltung 7.3.2022-10.3.2022 Mo-Fr, Sa, So
Studienrichtungen / Studienfächer:
WPF AOT-GL ab 2

 

Laser Technology [LT]

Dozentinnen/Dozenten:
Kristian Cvecek, Clemens Roider
Angaben:
Vorlesung, 4 SWS, benoteter Schein, ECTS: 5, Further information can be found on StudOn.
Termine:
Do, 16:15 - 17:45, Raum n.V.
Mi, 12:15 - 13:45, Raum n.V.
For details see StudOn (https://www.studon.fau.de/crs4032410.html)
Studienrichtungen / Studienfächer:
WPF IP-BA 5-6
WPF WING-BA-MB-ING-MG3 3-6
WPF MB-BA-FG3 3-6
WPF MB-MA-FG3 1-3
WPF MB-MA-IP3 1
WPF MB-MA-IP 2
WPF ME-MA-MG9 1-3
WPF ME-BA-MG9 3-6
WPF WING-MA 1-3
WPF BPT-MA-M 1-4
WPF NT-MA 3
Inhalt:
We strongly suggest basic knowledge in fundamentals of optics.

 

Lasersystemtechnik 1 [LST I]

Dozentinnen/Dozenten:
Peter Hoffmann, Sven Ackermann
Angaben:
Vorlesung, 2 SWS, Weitere Informationen finden Sie im Studon-Kurs.
Termine:
Do, 14:15 - 15:45, Raum n.V.
Die Vorlesung startet eine Woche später, d.h. die erste Vorlesung findet am 28.10.21 statt.
ab 28.10.2021
Studienrichtungen / Studienfächer:
WPF ME-BA-MG9 5-6
WF MB-BA ab 5
WF MB-MA ab 1
WPF ME-MA-MG9 1-3
WF WING-BA ab 5
WF WING-MA ab 1

 

Light as a versatile tool in biology and biophysics

Dozentinnen/Dozenten:
Leonhard Möckl, Katja Zieske
Angaben:
Seminar, 2 SWS, ECTS: 5
Termine:
Mi, 10:00 - 12:00, Raum n.V.
Max-Planck-Institut für die Physik des Lichts, Staudtstr.2, 91058 Erlangen
Inhalt:
Light can be used to examine biological systems such as human cells, bacteria, or viruses in various ways. In this seminar, we will explore this fascinating field, such as realizations in optogenetics, model systems, and correlative approaches (Katja Zieske) as well as fluorescence, super-resolution microscopy, image analysis, and deep learning (Leonhard Möckl). Each participant will prepare a talk on one of the topics listed below (or related ones), give a talk, and discuss the topic with the other students.

Key topics covered:
1. Principles of fluorescence
2. Labeling approaches for microscopy of biological systems
3. Localization-based super-resolution microscopy
4. Single-molecule and single-particle tracking
5. STED
6. Expansion microscopy
7. Image analysis
8. Deep learning-based approaches
9. AFM
10. Fluorescence correlation spectroscopy
11. Confocal microscopy + applications
12. Microfluidics
13. Lipid membranes
14. Optogenetic switches
15. Biological patterns

Objectives: Understand the specific advantages and challenges of light-based approaches in biology; learn to read and contextualize publications; present and discuss scientific findings.

If you want to participate in the seminar, please send an e-mail to Katja Zieske and Leonhard Möckl with your registration.

 

Machine Learning for Engineers I: Introduction to Methods and Tools [MLE1]

Dozentinnen/Dozenten:
Björn Eskofier, Jörg Franke, Nico Hanenkamp
Angaben:
Vorlesung, ECTS: 5
Termine:
See VHB for further details (https://kurse.vhb.org/)
Studienrichtungen / Studienfächer:
WF WING-BA 3-6
WF ME-BA 3-6
WF ME-MA 1-3
WPF ME-BA-MG10 3-6
WF MB-MA 1-3
WF MB-BA 3-6
WF IP-BA 3-6
WPF ME-MA-MG10 1-3
WF WING-MA 1-3
WPF DS-BA 2

 

MAOT Introduction

Dozent/in:
Jürgen Großmann
Angaben:
Vorlesung
Termine:
Zeit/Ort n.V.

 

Materialien und Bauelemente für die Optoelektronik und Energietechnologie: Grundlagen [OpEt-G]

Dozent/in:
Christoph J. Brabec
Angaben:
Vorlesung, 2 SWS, ECTS: 3, nur Fachstudium, die VL wird im WS 21-22 nicht gehalten. Sie ist identisch mit der VL Advanced Semiconductors Introduction: Devices & Applications (ASI - D&A)
Termine:
Zeit/Ort n.V.
Studienrichtungen / Studienfächer:
PF MWT-MA-WET 1
WPF MWT-MA-WET 1
WF ET-MA-MWT ab 1
PF NT-MA-WET 1
Voraussetzungen / Organisatorisches:
Vordiplom

 

Medical Image Processing for Diagnostic Applications (VHB-Kurs) [MIPDA]

Dozentinnen/Dozenten:
Andreas Maier, Tristan Gottschalk, Celia Martín Vicario, Julian Hoßbach
Angaben:
Vorlesung, 4 SWS, ECTS: 5
Termine:
Zeit/Ort n.V.
Studienrichtungen / Studienfächer:
WPF INF-MA ab 1
WPF INF-BA-V-ME ab 5
PF CE-MA-TA-IT ab 1
WPF IuK-MA-MMS-INF ab 1
WPF ICT-MA-MPS 1-4
WPF MT-MA-BDV ab 1
WPF MT-BA ab 5
WF CME-MA 1-4
WPF AI-MA ab 1
Voraussetzungen / Organisatorisches:
Requirements: mathematics for engineering

Organization: This is an online course of Virtuelle Hochschule Bayern (VHB). Go to https://www.vhb.org to register to this course. FAU students register for the written exam via meinCampus.

Inhalt:
Medical imaging helps physicians to take a view inside the human body and therefore allows better treatment and earlier diagnosis of serious diseases.

However, as straightforward as the idea itself is, so diversified are the technical difficulties to overcome when implementing a clinically useful imaging device.

We begin this course by discussing all available modalities and the actual imaging goals which highly affect the imaging result.

Some modalities produce very noisy results, but there are multiple other artifacts that show up in raw acquisition data and have to be dealt with. We address these issues in the chapter preprocessing and show how to compensate for image distortions, how to interpolate defect pixels, and finally correct bias fields in magnetic resonance images.

The largest portion of this course covers the theory of medical image reconstruction. Here, from a set of projections from different viewing angles a 3-D image is merged that allows a definite localization of anatomical and pathological features. Following roughly the historical development of CT devices, we study the process from parallel beam to fan beam geometry and include a discussion of phantoms as a tool for calibration and image quality assessment. We then move forward and learn about reconstruction in 3-D. Since the system matrix often grows in dimensions such that many direct solvers become infeasible, we also discuss pros and cons of iterative methods.

In the final chapter, image registration is introduced as the concept of computing the mapping that maps the content of one image to another. Two different acquisitions usually result in images that are at least rotated and translated against each other. Image registration forms the set of tools that we need to match certain image features in order to align both images for further processing, image improvement or image overlays.

Schlagwörter:
Mustererkennung, Medizinische Bildverarbeitung

 

Medical Image Processing for Interventional Applications (VHB-Kurs) [MIPIA]

Dozentinnen/Dozenten:
Andreas Maier, Tristan Gottschalk, Celia Martín Vicario, Julian Hoßbach
Angaben:
Vorlesung, 4 SWS, ECTS: 5
Termine:
Zeit/Ort n.V.
Studienrichtungen / Studienfächer:
WPF MT-BA ab 5
WPF INF-BA-V-ME 4-6
WPF INF-MA 1-4
WPF IuK-MA-MMS-INF 1-3
WPF ICT-MA-MPS 1-4
WF CE-MA-INF ab 1
WPF MT-MA-BDV 1-2
WPF AI-MA ab 1
Voraussetzungen / Organisatorisches:
mathematics for engineering; This lecture focuses on interventional procedures. It is recommended but not necessary to attend Medical Image Processing for Diagnostic Applications (MIPDA) before.
Inhalt:
This lecture focuses on recent developments in image processing driven by medical applications. All algorithms are motivated by practical problems. The mathematical tools required to solve the considered image processing tasks will be introduced.

In addition to the lectures, we also offer exercise classes. The exercises consist of theoretical parts where you immerse in lecture topics. But we also set emphasis on the practical implementation of the methods.

Schlagwörter:
Mustererkennung, Medizinische Informatik, Medizinische Bildverarbeitung

 

Modern Optics 1: Advanced Optics [PW Optics]

Dozentinnen/Dozenten:
Nicolas Joly, Stephan Götzinger
Angaben:
Vorlesung, 2 SWS, ECTS: 5
Termine:
Mi, 14:00 - 16:00, HG
Einzeltermine am 27.10.2021, 14:00 - 16:00, Zoom-Meeting
18.2.2022, 9:00 - 13:00, HG
Studienrichtungen / Studienfächer:
WF Ph-BA ab 5
WF Ph-MA ab 1
WF ILS-MA ab 1
PF CE-BA-TA-PO 5
WF AOT-GL ab 1
Voraussetzungen / Organisatorisches:
Experimentalphysik 2 und 3 (oder: Fundamentals of Optics). Die Vorlesung steht online zur Verfügung: https://video.mpl.mpg.de/cat/optics-and-optical-phenomena Theoretische Physik II
Inhalt:
1. Photonic Crystal Optics
2. Laser/ Pulsed light / pulse propagation
3. Guided wave optics
4. Fiber optics
5. Photonic crystal fibers
6. Optical resonators / microresonators
7. Acousto optics/spatial light modulator
8. Metamaterials
9. Orbital angular momentum
10. Superresolution

 

Modern Optics 1: Advanced Optics (Excercise class) [PW Optics (U)]

Dozentinnen/Dozenten:
Nicolas Joly, Stephan Götzinger
Angaben:
Übung, 2 SWS
Termine:
Do, 16:00 - 18:00, HE
Studienrichtungen / Studienfächer:
WF Ph-BA ab 5
WF Ph-MA ab 1
WF ILS-MA ab 1
PF CE-BA-TA-PO 5

 

Modern Optics 3: Quantum Optics

Dozent/in:
Stephan Götzinger
Angaben:
Vorlesung, 2 SWS, ECTS: 5
Termine:
Di, 14:15 - 16:00, HA
Einzeltermin am 21.2.2022, 9:00 - 12:00, HA
Die erste Vorlesung findet über Zoom statt.
Studienrichtungen / Studienfächer:
WF Ph-BA ab 5
WF Ph-MA ab 1
PF CE-BA-TA-PO 5
Inhalt:
Voraussetzungen:

Inhalte:
1. Photon statistics
2. Photon antibunching
3. Coherent states
4. Squeezed states
5. Photon number states
6. Atoms in cavities
7. Quantum cryptography
8. Quantum computation
9. Entangled states and teleportation
10. Quantum electrodynamics and the concept of the photon
11. Single-mode quantum optics
12. Multimode and continuous-mode quantum optics

 

Modern Optics 3: Quantum Optics (Excercise class)

Dozentinnen/Dozenten:
Stephan Götzinger, Assistenten
Angaben:
Übung, 2 SWS
Termine:
Do, 14:00 - 15:30, SRLP 0.179
Studienrichtungen / Studienfächer:
WF Ph-BA ab 5
WF Ph-MA ab 1
WF Ph-BA ab 5
WF ILS-MA ab 1
PF CE-BA-TA 5

 

Nanospektroskopie [NanoSpek]

Dozentinnen/Dozenten:
Wolfgang Heiß, Miroslaw Batentschuk
Angaben:
Vorlesung, 2 SWS, ECTS: 3, nur Fachstudium, Die VL findet über ZOOM statt: Zoom-Meeting beitreten https://fau.zoom.us/j/8483035447?pwd=aHBLVnZ4aVN0SUN0ZHQ5c1VHMkdIZz09 Meeting-ID: 848 303 5447 Kenncode: 932593
Termine:
Mo, 18:15 - 19:45, 3.71
Studienrichtungen / Studienfächer:
PF NT-MA 1
WPF AOT-GL ab 1

 

Neuer Master: WS-Optical properties of glasses [WW3-WS-VL-OptProp]

Dozent/in:
Dominique de Ligny
Angaben:
Vorlesung, 2 SWS, ECTS: 2,5, nur Fachstudium, Beginn ab Dienstag 26.10. Wahlmodul Glass II
Termine:
Mi, 12:00 - 13:30, 0.56
Studienrichtungen / Studienfächer:
WF MWT-MA-GUK ab 1

 

Neuer Master: WS-Vibrational spectroscopies, from theory to practice [WW3-WS-VL-Vibra]

Dozent/in:
Dominique de Ligny
Angaben:
Vorlesung mit Übung, 2 SWS, ECTS: 2,5, nur Fachstudium, Beginn ab Montag 25.10. Wahlmodul Glass I
Termine:
Mo, 16:15 - 17:45, 0.15
Studienrichtungen / Studienfächer:
WF MWT-MA-GUK ab 1

 

Numerical tools in optics (Matlab)

Dozent/in:
Angela Perez Castaneda
Angaben:
Übung, 2 SWS, benoteter Schein, ECTS: 2,5
Termine:
Di, Fr
Studienrichtungen / Studienfächer:
WPF AOT-GL 3

 

Optical Diagnostics in Energy and Process Engineering [CBI-OPDI]

Dozentinnen/Dozenten:
Franz Huber, Stefan Will
Angaben:
Vorlesung, 2 SWS, benoteter Schein, ECTS: 5, Frühere Vorlesungsbezeichnung: Messmethoden der Thermodynamik; Für CBI: Vorlesung, Übung und Praktikum
Termine:
Di, 8:15 - 9:45, KS I
On campus (in exceptional cases as an online event). First lecture 19.10.2021. The slides and sound will be recorded and uploaded in StudOn./Die Folien und der Ton werden aufgenommen und anschließend auf StudOn gestellt.
Studienrichtungen / Studienfächer:
WPF CBI-MA 1-4
WPF MB-MA-FG10 1-4
WF LSE-MA 1-4
WF ET-MA-VTE 1-2
WPF CEN-MA 1-3
WPF CEP-MA 1-3
Voraussetzungen / Organisatorisches:
Basics in thermodynamics and fluid mechanics. Students of other subjects (Chemical- and Bioengineering, Mechanical Engineering, Life Science Engineering, Energy Technology, Computational Engineering) can participate.
Inhalt:
Introduction to conventional and novel optical techniques to measure state and process functions in thermodynamical systems.
  • properties of light; properties of molecules; Boltzmann distribution;

  • geometric optics; lasers (HeNe, Nd:YAG, dye, frequency conversion); continuous wave and pulsed lasers;

  • photoelectric effect; photodetectors (photomultiplier, photodiode, CCD, CMOS, image intensifier); digital image processing; image noise and resolution;

  • shadowgraphy and schlieren techniques;

  • elastic light scattering (Mie scattering, Rayleigh thermometry, nanoparticle size and shape, droplet sizing);

  • Raman scattering (species concentration, temperature, diffusion);

  • incandescence (thermal radiation, pyrometry, particles);

  • velocimetry (flow fields);

  • absorption, fluorescence (temperature, species, concentration)

Empfohlene Literatur:
  • Lecture Slides
  • Bräuer, Andreas: In situ Spectroscopic Techniques at High Pressure, Amsterdam 2015

 

Optical Lithography: Technology, Physical Effects, and Modelling

Dozent/in:
Andreas Erdmann
Angaben:
Vorlesung, 2 SWS, Die Vorlesung findet voraussichtlich über Zoom statt. Weitere Hinweise finden Sie im StudOn-Kurs zur Vorlesung.
Termine:
Do, 12:15 - 13:45, Hans-Georg-Waeber-Saal
Studienrichtungen / Studienfächer:
WF EEI-MA ab 1
WF EEI-BA ab 5
WF EEI-MA ab 1
WF AOT-GL ab 1
PF NT-MA 1
Inhalt:
Semiconductor lithography covers the process of pattern transfer from a mask/layout to a photosensitive layer on the surface of a wafer. It is one of the most critical steps in the fabrication of microelectronic circuits. The majority of semiconductor chips are fabricated by optical projection lithography. Other lithographic techniques are used to fabricate lithographic masks or new optical and mechanical devices on the micro- or nanometer scale. Innovations such as the introduction of optical proximity correction OPC), phase shift masks (PSM), special illumination techniques, chemical amplified resist (CAR) materials, immersion techniques have pushed the smallest feature sizes, which are produced by optical projection techniques, from several wavelengths in the early 80ties to less than a quarter of a wavelength nowadays. This course reviews different types of optical lithographies and compares them to other methods. The advantages, disadvantages, and limitations of lithographic methods are discussed from different perspectives. Important components of lithographic systems, such as masks, projection systems, and photoresist will be described in detail. Physical and chemical effects such as the light diffraction from small features on advanced photomasks, image formation in high numerical aperture systems, and coupled kinetic/diffusion processes in modern chemical amplified resists will be analysed. The course includes an in-depth introduction to lithography simulation which is used to devise and optimize modern lithographic processes.

 

Übung zu Optical Lithography

Dozent/in:
Andreas Erdmann
Angaben:
Übung, 2 SWS, Für Master AOT verpflichtende Zusatzveranstaltung, für andere Studiengänge freiwillig
Termine:
Fr, 16:15 - 17:45, Raum n.V.
Studienrichtungen / Studienfächer:
WF AOT-GL ab 1
PF NT-MA 1
WF EEI-BA ab 5
WF EEI-MA ab 1

 

Optical Technologies in Life Science [OTLS]

Dozentinnen/Dozenten:
Sebastian Schürmann, Oliver Friedrich, Maximilian Waldner, Lucas Kreiß
Angaben:
Vorlesung mit Übung, 4 SWS, ECTS: 5, nur Fachstudium
Termine:
Di, 10:15 - 13:00, SR 00.030
Studienrichtungen / Studienfächer:
WPF MT-MA-GPP 1-3
WPF LSE-MA 1-3
WPF AOT-GL 1-3
WPF CE-MA-TA-PO ab 1
Voraussetzungen / Organisatorisches:
Kombinierte Vorlesung & Übung im Umfang von 4 SWS.
Schriftliche Prüfung (120 min.)

Empfohlene Voraussetzungen: Grundkenntnisse in den Bereichen Optik und Zellbiologie

Anmeldung über StudOn erforderlich.

Inhalt:
Themen:
  • Anwendungen optischer Messmethoden im Bereich der Zellbiologie und Medizin

  • Mikroskopie: Grundlegende Konzepte und Kontrastverfahren, Auflösungsvermögen und Grenzen, Aufbau und Komponenten von Lichtmikroskopen, Fluoreszenz-Mikroskopie

  • Anwendungen von Fluoreszenz-Mikroskopie im Life Science Bereich, Verfahren zur Markierung biologischer Strukturen und Vorgänge in Zellen

  • Epifluoreszenz-, Konfokal-, Multiphotonen-Mikroskopie, Konzepte und Anwendungsbeispiele

  • Optische Endoskopie und Endomikroskopie in Forschung und Klinik

  • Super-Resolution Mikroskopie, Konzepte und Anwendungsbeispiele für optische Bildgebung jenseits der beugungsbedingten Auflösungsgrenze

Lernziele und Kompetenzen:

Die Studierenden

  • verstehen die grundlegenden Konzepte und technische Umsetzung optischer Technologien im Bereich Life Sciences und kennen typische Anwendungsbeispiele

  • können verschiedene technische Ansätze im Hinblick auf wissenschaftlich Fragestellungen vergleichen und bewerten

  • können Vor- und Nachteile verschiedener Technologien, sowie konzeptionelle und praktische Limitationen einschätzen und bei der Analyse wissenschaftlicher Ansätze und Ergebnisse berücksichtigen

  • können selbstständig vertiefende Informationen zu technischen Lösungen, Materialien und Methoden im Bereich der Mikroskopie und Spektroskopie sammeln, strukturieren, und für die zielgerichtete Planung wissenschaftlicher Experimente auswählen

  • können wissenschaftliche Fragestellungen und technische Ansätze in Kleingruppen kritisch diskutieren und gemeinschaftlich Ansätze zur Beantwortung von Forschungsfragen mit Hilfe optischer Technologien entwickeln

Empfohlene Literatur:
  • Michael W. Davidson et al: Microscopy Primer, http://micro.magnet.fsu.edu, umfassendes Online-Lehrwerk über grundlegende Mikroskopieverfahren und neueste technische Entwicklungen
  • Bruce Alberts: Molecular Biology of the Cell, 4th Edition, New York, Garland Science Publisher. Standardlehrwerk für die Zellbiologie.

  • Ulrich Kubitschek: Fluorescence Microscopy: from Principles to Biological Applications, Wiley-VCH Verlag.

  • Douglas Chandler & Robert Roberson: Bioimaging: Current Concepts in Light and Electron Microscopy, Jones and Bartlett Publishers.

 

Optische Kommunikationsnetze [OptK]

Dozent/in:
Herbert Haunstein
Angaben:
Vorlesung, 2 SWS, benoteter Schein, ECTS: 2,5, nur Fachstudium
Termine:
Fr, 16:15 - 17:45, Zoom-Meeting
Studienrichtungen / Studienfächer:
WPF EEI-BA-INT 5-6
WPF EEI-MA-INT 1-4
WPF IuK-MA-ÜTMK-EEI 1-4
WPF ICT-MA-NDC 1-4
WPF CME-MA ab 1
WPF AOT-GL ab 1
Voraussetzungen / Organisatorisches:
Kommunikationsnetze I (empfohlen aber nicht zwingend notwendig)
Inhalt:
Während im Netzanschlussbereich elektrische Übertragungsverfahren wie analoge Modems, ISDN oder DSL, sowie die Mobilfunkstandards DECT, GSM, UMTS und WiMAX eingesetzt werden, finden in der Langstreckenübertragung optische Schnittstellen nach den SDH/OTN-Standards Anwendung. Diese Standards regeln sowohl die Protokolle für die Zusammenführung verschiedener Datenströme (Multiplex), als auch die Schnittstellen für die physikalische Übertragung. Durch die stark wachsende Anzahl paketorientierter Datenverbindungen (Internet, E-mail, voice over IP (VoIP) sowie IPTV) ist eine schnelle Zunahme der Ethernet, Gigabit-Ethernet (GigE) und 10Gigabit Ethernet-Anschlüsse zu verzeichnen. Entsprechend werden verstärkt paketorientierte Übertragungsnetze entwickelt, die langfristig die bisherige Infrastruktur ersetzen werden. Zur Kostensenkung wird dabei eine möglichst effiziente Verbindung zwischen den verschiedenen Netzwerk-Layern angestrebt. Einen weiteren wichtigen Aspekt stellt die Dynamisierung der Netze, also die Anpassung der Netzeigenschaften an das aktuelle Verkehrsaufkommen. Ziel der Vorlesung ist es, die Grundlagen und Trends von modernen Glasfasernetzen zu vermitteln.
1. Anforderungen an optische Netze
  • Anwendungen und Dienste

  • Topologien allgemein

  • Hierarchische Gliederung (Zugangs-, Metro-, Kernnetz)

  • Statische und dynamische Anforderungen an optische Netze

  • Daten Transport Protokolle (TCP, Internet-Protokoll)

  • Dimensionierung, Verkehrstheorie, -modelle, -charakterisierung

2. Standards in der optischen Übertragungstechnik
a) Aggregationsnetze

  • Ethernet (IEEE 802)

  • Passive optische Netze (PONs)

b) Transportnetze

  • Synchrone Digitale Hierarchie (SDH), Synchrone Optische NETze (SONET)

  • Optisches Transportnetz (OTN)

  • Multi-Protocol-Label-Switching MPLS (RFC 3031),

  • Provider Backbone Transport (PBT), Transport-MPLS (ITU-T G.8110.1/Y.1370.1)

c) Netzsteuerung

  • ASON (ITU-T, G.8080)

  • GMPLS (RFC 4139)

3. Komponenten optischer Transportnetze (Weitverkehrsnetz)

  • Sender / Empfänger, Wellenlängen-Multiplexer, optische Verstärker,

  • Optische Schalter, einstellbare optische Filter, Dispersionskompensation

4. Optische Netze

  • Einführung in die optische Übertragung, optische Schnittstellen,

  • Einkanal- / Mehrkanalsysteme, optisches Schalten

  • Optische Transparenz, begrenzende Effekte, Netzmonitoring

Empfohlene Literatur:
H. Haunstein: Hilfsblätter zur Vorlesung.
R. Rawaswami: Optical Networks - A practical perspective, Academic Press, 1998
B. Mukherjee: Optical WDM Networks, Springer, 2006
T.S. El-Bawab: Optical switching, Springer, 2006
U. Black: Optical Networks - Third generation transport systems, Prentice Hall, 2002
P. Tomsu and Chr. Schmutzer: Next generation optical networks, Prentice Hall, 2002
I.P. Kaminow: Optical Fiber Telecommunications IV A & B, Academic Press

 

Pattern Recognition [PR]

Dozentinnen/Dozenten:
Andreas Maier, Paul Stöwer
Angaben:
Vorlesung, 3 SWS, Schein, ECTS: 3,75, geeignet als Schlüsselqualifikation, This class will be given purely on fau.tv. Short videos will be posted on a regular schedule (not necessary the in-person time mentioned here at UnivIs)
Termine:
Mo, 14:15 - 15:45, H4
Do, 10:15 - 11:45, H4
Studienrichtungen / Studienfächer:
WPF ME-BA-MG6 3-5
WPF MT-MA-BDV 1-3
PF IuK-MA-MMS-INF ab 1
PF ICT-MA-MPS 1-4
WPF CE-MA-INF ab 1
WF CE-BA-TW ab 5
WPF INF-MA ab 1
WPF CME-MA ab 1
WF ASC-MA 1-4
WPF ME-MA-MG6 1-3
WPF DS-MA ab 1
Schlagwörter:
Mustererkennung, maschinelle Klassifikation

 

Pattern Recognition Exercises [PR E]

Dozentinnen/Dozenten:
Paul Stöwer, Siming Bayer
Angaben:
Übung, 1 SWS, ECTS: 1,25, nur Fachstudium, Information regarding the online teaching will be provided in the studon course.
Studienrichtungen / Studienfächer:
WPF ME-BA-MG6 3-5
WPF CE-MA-INF ab 1
WF CE-BA-TW ab 5
WPF CME-MA ab 1
PF IuK-MA-MMS-INF ab 1
PF ICT-MA-MPS 1-4
WPF INF-MA ab 1
WPF MT-MA-BDV 1-3
WF ASC-MA 1-4
WPF ME-MA-MG6 1-3
WPF DS-MA ab 1
Schlagwörter:
Mustererkennung, Klassifikation

 
 
Mi16:15 - 17:4502.151-113 a CIP, 02.151-113 b CIP  Stöwer, P. 
 
 
Fr12:15 - 13:4502.133-113  N.N. 
 

Photonics in Medical Engineering [PME]

Dozent/in:
Florian Klämpfl
Angaben:
Vorlesung, 2 SWS, ECTS: 2,5, Further information can be found on StudOn.
Termine:
Do, 16:15 - 17:45, SR LPT 02.030
The first lecture will be held on 21st October. The first exercise will be held on 26th October.
Studienrichtungen / Studienfächer:
WPF AOT-GL ab 1
WPF NT-MA 3

 

Photonics in Medical Engineering Exercise [PME-E]

Dozentinnen/Dozenten:
Florian Klämpfl, Alexander Wittmann, Tobias Staudt
Angaben:
Übung, 2 SWS, ECTS: 2,5, Further information can be found on StudOn.
Termine:
Di, 16:15 - 17:45, SR LPT 02.030
The first lecture will be held on 21st October. The first exercise will be held on 26th October.
Studienrichtungen / Studienfächer:
WPF AOT-GL ab 1
WPF NT-MA 3

 

Physikalisches Fortgeschrittenenpraktikum (Mini) für Nebenfächler

Dozentinnen/Dozenten:
Matthias Weißer, Heiko B. Weber
Angaben:
Praktikum, 3 SWS, ECTS: 2,5, Das Praktikum richtet sich an Studenten der Fachrichtung Mathematik mit Nebenfach Experimenteller Physik
Termine:
Zeit/Ort n.V.
Studienrichtungen / Studienfächer:
WPF M-BA 4-6
Voraussetzungen / Organisatorisches:
Das Praktikum findet als Blockpraktikum vom 7.3. - 8.4.2022 statt. Weitere Versuchstage gibt es im Vorlesungszeitraum ab dem 25.4.2022 jeweils dienstags und mittwochs. Es sind 7 Versuchstage zu absolvieren. Versuchstage können nach Verfügbarkeit gebucht werden. Nähere Informationen gibt es auf der Praktikums-Homepage unter: https://www.physik.nat.fau.de/fpraktikum/

 

Physikalisches Seminar: Nonlinear and Quantum Optics

Dozentinnen/Dozenten:
Maria Chekhova, Markus Sondermann
Angaben:
Hauptseminar, 2 SWS, ECTS: 5, nur Fachstudium
Termine:
Ort und Zeit nach Vereinbarung
Studienrichtungen / Studienfächer:
WPF Ph-BA ab 5
WPF Ph-MA ab 1

 

Produktanalyse [PCHAR]

Dozentinnen/Dozenten:
Johannes Walter, Wolfgang Peukert
Angaben:
Vorlesung, 2 SWS, ECTS: 4, nur Fachstudium
Termine:
Mo, 14:15 - 15:45, LSTM-SR
Di, 12:15 - 13:45, LSTM-SR
Sign into the StudOn course Produktanalyse for further information about lectures/exercises and related modalities. https://www.studon.fau.de/studon/goto.php?target=crs_4039568
Studienrichtungen / Studienfächer:
WPF CBI-MA 1-3
WPF NT-MA 3
WPF ET-MA-VTE 3
WPF CEN-MA 1-3
Inhalt:
The lecture introduces modern (optical) techniques for characterization of disperse systems in chemical engineering and materials science. The participants will learn general principles as well as where, when and on which time scale information on materials properties can be gained by the discussed methods. For disperse systems the latter can be for example particle size, particle shape, materials composition, electronic properties and surface chemistry as well as surface charge. The participants will learn in the lecture how to judge the results of an individual technique, learn about its boundaries and where a combination of several techniques is more promising. As many of the optical techniques rely on good knowledge in optics and their fundaments, the necessary skills will be briefly introduced.
  • Introduction to Materials Properties and Classification

  • Sampling, Error Sources and their Analysis- Definition and Determination of Particle Distribution, Size and Shape

  • Principles Optics and Diffraction I

  • Principles Optics and Diffraction II

  • Diffraction, Rayleigh-, Mie scattering

  • Static and Dynamic Light scattering

  • X-Ray Scattering and Applications

  • Zetapotential and its measurement with optical methods

  • Analytical Ultra-Centrifugation with Multi-Wavelength Optics

  • Nonlinear Optics at Interfaces and its Application

  • Color and its Measurement: UV-Vis and Fluorescence Spectroscopy

  • Infrared and Raman Spectroscopy including Surface-Enhanced Techniques

  • Scanning Mobility Particle Sizer (SMPS)

  • Scanning Probe Microscopy and Electron Microscopy

Empfohlene Literatur:
  • Principles of physics extended (9. ed., internat. student version); Authors: David Halliday, Robert Resnik, Jearl Walker; Wiley 2011
  • Springer Handbook of Materials Measurement Methods; Authors: Horst Czichos, T. Saito, Smith Leslie; Springer 2006 (electronic access within FAU)

  • Nonlinear Optics; Author: Robert W. Boyd; Academic Press 2008

Schlagwörter:
Produktanalyse

 

Übung Produktanalyse [Üb. PCHAR]

Dozentinnen/Dozenten:
Johannes Walter, Wolfgang Peukert
Angaben:
Übung, 1 SWS, nur Fachstudium
Termine:
s. Aushang (Lehrstuhl für Feststoff- und Grenzflächenverfahrenstechnik, Cauerstraße 4)
Studienrichtungen / Studienfächer:
WPF CBI-MA 1-3
WPF NT-MA 3
WPF CEN-MA 1-3

 

Topics of Optical Technologies

Dozentinnen/Dozenten:
Silvana Burger, Michael Rausch, Florian Klämpfl, Bernhard Schmauss, Christoph Pflaum, Nicolas Joly, Maria Chekhova
Angaben:
Sonstige Lehrveranstaltung, 2 SWS, Schein, ECTS: 2,5, nur Fachstudium
Termine:
see time schedule

 

Waveguides, optical fibres and photonic crystal fibres [OMS/WAV]

Dozentinnen/Dozenten:
Nicolas Joly, Bernhard Schmauss
Angaben:
Vorlesung mit Übung, 4 SWS, ECTS: 5
Termine:
Di, 14:15 - 15:45, 00.152-113
Fr, 12:15 - 13:45, 00.152-113
The course will be conducted as online course (with a mix of live and recorded lessons). For more details and registration please go to https://www.studon.fau.de/crs3262147_join.html
Studienrichtungen / Studienfächer:
WPF AOT-GL 3
WPF Ph-MA 1
Inhalt:
The goal of this lecture is to give basics knowledge of optical waveguides and their applications. This will cover the following topics:
  • Guidance mechanism (geometric and EM approaches)

  • Photonic crystal fibres (solid-core, hollow-core, bandgap and anti-resonance fibres)

  • Nonlinear optics effect in optical fibres

  • Applications



UnivIS ist ein Produkt der Config eG, Buckenhof