

Modulbezeichnung: Höhere Festigkeitslehre (HF) 5 ECTS

(Advanced Strength of Materials)

Modulverantwortliche/r: Sebastian Pfaller
Lehrende: Sebastian Pfaller

Startsemester: WS 2022/2023 Dauer: 1 Semester Turnus: jährlich (WS)
Präsenzzeit: 60 Std. Eigenstudium: 90 Std. Sprache: Deutsch

Lehrveranstaltungen:

Höhere Festigkeitslehre (WS 2022/2023, Vorlesung, 2 SWS, Sebastian Pfaller)

Übungen zur Höheren Festigkeitslehre (WS 2022/2023, Übung, 2 SWS, Sebastian Pfaller)

Tutorium zur Höheren Festigkeitslehre (WS 2022/2023, optional, Tutorium, 2 SWS, Sebastian Pfaller)

Empfohlene Voraussetzungen:

Das vorliegende Modul baut auf Inhalten des Moduls "Statik, Elastostatik und Festigkeitslehre" auf. Es wird daher empfohlen, das Modul "Statik, Elastostatik und Festigkeitslehre" oder Lehrveranstaltungen vergleichbaren Inhaltes vorab zu absolvieren.

Inhalt:

Torsion prismatischer Stäbe

- Torsion von Vollquerschnitten
- Torsion dünnwandiger Querschnitte
- wölbbehinderte Torsion (Grundlagen und Näherungslösung)

Axialsymmetrische Spannungszustände

- Scheiben (Grundlagen und Schrumpfverbindungen)
- Kreisplatte
- biegesteife Zylinderschale unter Innendruck

Inelastisches Materialverhalten

- Grundbegriffe und Analogiemodelle
- plastisches Verhalten metallischer Werkstoffe
- plastische Stabwerke, elastisch-plastischer Balken, plastisches Stoffgesetz für duktiles Material bei mehrachsigem Spannungszustand

Lernziele und Kompetenzen:

Die Studierenden

- sind vertraut mit den weiterführenden Begriffen der höheren Festigkeitslehre
- können die Torsion komplizierter Querschnitte inklusive Wölbbehinderung behandeln
- können axialsymmetrische Spannungszustände von Scheiben, Platten und Kreiszylinderschalen berechnen
- kennen die Grundbegriffe inelastischen Materialverhaltens und können diese anwenden auf plastische Stabwerke und elastisch-plastische Balken

Literatur:

- Szabo: Höhere Technische Mechanik, Berlin:Springer 1977
- Neuber: Technische Mechanik, Zweiter Teil: Elastostatik und Festigkeitslehre, Berlin:Springer 1971
- Lippmann: Mechanik des plastischen Fließens, Berlin:Springer 1981

Verwendbarkeit des Moduls / Einpassung in den Musterstudienplan:

Das Modul ist im Kontext der folgenden Studienfächer/Vertiefungsrichtungen verwendbar:

[1] Wirtschaftsingenieurwesen (Bachelor of Science)

(Po-Vers. 2018w | TechFak | Wirtschaftsingenieurwesen (Bachelor of Science) | Studienrichtung Maschinenbau (Studienbeginn ab 01.10.2018) | Gesamtkonto | Technische Wahlmodule und Hochschulpraktikum | Technische Wahlmodule | Höhere Festigkeitslehre)

UnivIS: 26.06.2024 13:37

Dieses Modul ist daneben auch in den Studienfächern "Maschinenbau (Bachelor of Science)", "Maschinenbau (Master of Science)", "Wirtschaftsingenieurwesen (Master of Science)" verwendbar.

Studien-/Prüfungsleistungen:

Höhere Festigkeitslehre (Prüfungsnummer: 998986) (englische Bezeichnung: Advanced Strength of Materials)

Prüfungsleistung, Klausur, Dauer (in Minuten): 90

Anteil an der Berechnung der Modulnote: 100% Prüfungssprache: Deutsch

Erstablegung: WS 2022/2023, 1. Wdh.: SS 2023

1. Prüfer: Sebastian Pfaller

UnivIS: 26.06.2024 13:37