Untersuchung neuronaler Netze zur Objekterkennung und -lokalisation In dieser Arbeit werden effiziente neuronale Verfahren entwickelt, die es erlauben,
3D Objekte anhand einzelner 2D-Grauwertbild sowohl zu erkennen als auch zu lokalisieren.
Das Anwendungsbeispiel dafür stellt eine Büroumgebung mit typischen
Bürogegenständen dar.
Die Motivation eines neuronalen Ansatzes liegt in den vielen positiven Eingenschaften,
über die die neuronale Netze gegenüber herkömmlichen Ansätzen verfügen.
Beispiele hierfür sind ihre Lernfähigkeit, höhere Fehlertoleranz, Parallelität,
verteilte und aktive Wissensrepräsentation.
Aber im Gegensatz zu üblichen neuronalen Verfahren werden hier
erscheinungsbasierte und segmentierungsfreie
Methoden verwendet, um unerwünschte Unter- bzw. Übersegmentierung zu vermeiden.
Dabei wird zunächst versucht, die Intensitätswerte der Bildpunkte direkt
als ursprüngliche Merkmale zu verwenden. Anschliessend wird durch
Konstruktion verschiedener Netze die Datenmenge reduziert, wodurch neue Merkmale
extrahiert werden. Anhand dieser Merkmale werden mittels verschiedener Netze bestimmt,
ob gesuchte Objekte vorhanden sind und in welcher Lage sich die vorhandenen Objekte befinden. Vier Lageparameter, darunter zwei Translationsparameter und zwei Rotationsparameter wurden geschätzt. Die Schätzung der zwei Translationsparameter, welche die x- und y- Koordinate eines Objektes innerhalb der Bildebene sind, erfolgt je durch ein nicht voll-verknüftetes drei-schichtiges Feed-Forward Netz. Zwei Rotationswinkel, die interne Rotation und die externe Rotation, wurde je durch ein DLVQ--Netz berechnet.
Auf die o.g. Verfahren aufbauend, wurde eine Strategie zur zur Mehr-Objekterkennung
bei Verdeckungen und komplexem Hintergrund entwickelt und implementiert. Verschiedene
Merkmale, darunter die auf Principal Component Network (PCN) basierende Merkmale, sowie
eine Reihe Wavelet-Transformation basierte Merkmale, wurde miteinander verglichen,
wodurch die Robustkeit und Genauigkeit der neuronale Verfahren demonstriert wurden. | Projektleitung: Prof. em. Dr.-Ing. Dr.-Ing. h.c. Heinrich Niemann
Beteiligte: Chunrong Yuan
Stichwörter: Objekterkennung; Objektlokalisation; erscheinungsbasiert; Neuronale Netze
Laufzeit: 1.4.1997 - 1.4.2001
Förderer: KAS
|